On the Use of Long-Term Average Spectrum in Automatic Speaker Recognition
نویسندگان
چکیده
State-of-the-art automatic speaker recognition systems use mel-frequency cepstral coefficients (MFCC) features to describe the spectral properties of speakers. In forensic phonetics, the long-term average spectrum (LTAS) has been used for the same purpose. LTAS provides an intuitive graphical representation which can be used to visualize and quantify speaker differences. However, few studies have reported the use of LTAS in automatic speaker recognition. Thus, the purpose of this paper is to systematically study how to use the LTAS in automatic speaker recognition. We will also find out whether it provides additional discriminative information in respect to the MFCC-based system.
منابع مشابه
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملHunting for Wolves in Speaker Recognition
Identification and selection of speaker pairs that are difficult to distinguish offers the possibility of better focusing speaker recognition research, while also reducing the amount of data needed to estimate system performance with confidence. This work aims to predict which speaker pairs will be difficult for automatic speaker recognition systems to distinguish, by using features that charac...
متن کاملRobust Speech Recognition by Combining Short-Term and Long-Term Spectrum Based Position-Dependent CMN with Conventional CMN
In a distant-talking environment, the length of channel impulse response is longer than the short-term spectral analysis window. Conventional short-term spectrum based Cepstral Mean Normalization (CMN) is therefore, not effective under these conditions. In this paper, we propose a robust speech recognition method by combining a short-term spectrum based CMN with a long-term one. We assume that ...
متن کاملتخمین سریع ضرایب پیچش در هنجارسازی طول مجرای صوتی با استفاده از امتیاز به دست آمده از مدلسازی تشخیص جنسیت
The performance of automatic speech recognition (ASR) systems is adversely affected by the variations in speakers, audio channels and environmental conditions. Making these systems robust to these variations is still a big challenge. One of the main sources of variations in the speakers is the differences between their Vocal Tract Length (VTL). Vocal Tract Length Normalization (VTLN) is an effe...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کامل